LLM Deep Dives & Use Cases: Insights into Chatbot & Agentic AI Innovations
Explore expert insights into the technical intricacies and real-world applications of advanced AI. Dive deep into Large Language Model (LLM) use cases, detailed technical analyses, and practical guides that reveal how NLP, semantic search, and RAG systems are driving the next wave of chatbot innovation.
Chatbots, now omnipresent, face a crisis of accuracy and security highlighted by recent public blunders at Air Canada and Chevrolet, where bots made unintended promises. Air Canada's attempt to deflect blame onto its bot was rejected by authorities, underscoring a harsh reality: companies are indeed responsible for their bots' actions. Despite the prowess of language models like ChatGPT, their inherent nature to occasionally fabricate with confidence poses unique challenges. Drawing lessons from cybersecurity, this article explores four advanced red team testing strategies aimed at reining in bot misstatements and significantly bolstering chatbot security.
In this article, we delve into the evolution of search technologies, tracing the journey from the conventional keyword-based search methods to the cutting-edge advancements in semantic search. We discuss how semantic search leverages sentence embeddings to comprehend and align with the context and intentions behind user queries, thereby elevating the accuracy and relevance of search outcomes. Through the integration of vector databases such as OpenSearch, we illustrate the development of sophisticated semantic search systems designed to navigate the complexities of modern data sets. This approach not only delivers a more refined search experience but also enhances the precision of results by accurately interpreting the intent of user inquiries, representing a notable leap forward in the progression of search technology.
Large Language Models (LLMs) are increasingly popular due to their ability to complete a wide range of tasks. However, assessing their output quality remains a challenge, especially for complex tasks where there is no standard metric. Fine-tuning LLMs on large datasets for specific tasks may be a potential solution to improve their efficacy and accuracy. In this article, we explore the potential ways to assess LLM output quality:
In this article, we explore some practical uses of AI driven automated text generation. We demonstrate how technologies like GPT-3 can be used to better your business applications by automatically generating training data which can be used to bootstrap your machine learning models. We also illustrate some example uses of language transformations like transforming english into legalese or spoken text into written.